The gas-phase reaction of methane sulfonic acid with the hydroxyl radical without and with water vapor.
نویسندگان
چکیده
The gas phase reaction between methane sulfonic acid (CH3SO3H; MSA) and the hydroxyl radical (HO), without and with a water molecule, was investigated with DFT-B3LYP and CCSD(T)-F12 methods. For the bare reaction we have found two reaction mechanisms, involving proton coupled electron transfer and hydrogen atom transfer processes that produce CH3SO3 and H2O. We also found a third reaction mechanism involving the double proton transfer process, where the products and reactants are identical. The computed rate constant for the oxidation process is 8.3 × 10(-15) cm(3) s(-1) molecule(-1). CH3SO3H forms two very stable complexes with water with computed binding energies of about 10 kcal mol(-1). The presence of a single water molecule makes the reaction between CH3SO3H and HO much more complex, introducing a new reaction that consists in the interchange of H2O between HO and CH3SO3H. Our kinetic calculations show that 99.5% of the reaction involves this interchange of the water molecule and, consequently, water vapor does not play any role in the oxidation reaction of methane sulfonic acid by the hydroxyl radical.
منابع مشابه
Modifying functionalized-carbon-nanotube capacity to enhance water-vapor adsorption capacity from nitrogen gas
The primary objective of this paper is to enhance the water-vapor-adsorption capacity of multiwall-carbon-nanotube (MWCNT) from nitrogen gas by grafting sulfonic acid groups and doping palladium nanoparticles into the adsorbent. MWCNT has been selected to be modified because of having homogeneous adsorption energy compared to silica gel. As a result, it is capable of creating isotherm having sh...
متن کاملGreen synthesis of bis(indolyl)methanes in water using sulfonic acid functionalized silica (SiO2-Pr-SO3H)
Bis(indolyl)methanes are important group of bioactive metabolites of terrestrial and marine regions. They were synthesized by different methods. Herein, a clean, one-pot synthesis of bis(indolyl)methane derivatives by cyclo-condensation reaction of indole and various aldehydes using Sulfonic acid functionalized silica (SiO2-Pr-SO3H) in aqueous media is reported. The advantages of this new metho...
متن کاملGreen synthesis of bis(indolyl)methanes in water using sulfonic acid functionalized silica (SiO2-Pr-SO3H)
Bis(indolyl)methanes are important group of bioactive metabolites of terrestrial and marine regions. They were synthesized by different methods. Herein, a clean, one-pot synthesis of bis(indolyl)methane derivatives by cyclo-condensation reaction of indole and various aldehydes using Sulfonic acid functionalized silica (SiO2-Pr-SO3H) in aqueous media is reported. The advantages of this new metho...
متن کاملInfrared Study of the Surface Species Formed by Sequential Chemical Vapor Deposition of Dimethyl Zinc and Ethanethiol on Hydroxylated Alumina Surfaces
The surface species formed by the reaction of gas-phase dimethylzinc with self-supported alumina pellets are examined by Fourier transform infrared spectroscopy. Dimethylzinc reacts with the surface -OH groups of alumina at room temperature evolving methane and yielding mainly surface Al-O-Zn-CH3 species. A small amount of CH3 species appears to bind to the Lewis acid sites of alumina as well, ...
متن کاملImproved numerical simulation of the low temperature Fischer-Tropsch synthesis in a trickle bed reactor
Abstract Gas to liquid (GTL) process involves heterogeneous catalytic chemical reactions that convert synthesis gas to hydrocarbons and water vapor. A three phase reactor, called Low temperature Fischer-Tropsch (LTFT) is commonly applied for GTL process. In this reactor the gaseous phase includes the synthesis gas, light hydrocarbons and water vapor, the liquid phase is a mixture of the h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 14 شماره
صفحات -
تاریخ انتشار 2013